Jan 25, 2019 Seitenansicht:438
Lithium-Ionen-Batterien haben eine sehr nützliche Funktion für die Strommessung. Beim Entladen nimmt die Batteriespannung mit dem Durchgang von Elektrizität allmählich ab, und es gibt eine beträchtliche Steigung. Dies liefert uns eine weitere ungefähre Methode zur Strommessung. Die Methode zur Erfassung der Batteriespannung ist so, als ob die Messung des Wasserstandes im Wassertank die verbleibende Wassermenge grob abschätzen kann. Tatsächlich ist die Spannung der Lithiumbatterie jedoch viel komplizierter als die Messung des ruhigen Wasserstandes im Tank. Die Verwendung der Spannung zum Schätzen der verbleibenden Kapazität der Batterie weist die folgende Instabilität auf: Dieselbe Batterie ändert sich bei derselben verbleibenden Kapazität der Spannungswert aufgrund der Größe des Entladestroms. Je höher der Entladestrom ist, desto niedriger ist die Spannung. In Abwesenheit von Strom ist die Spannung am höchsten; der Einfluss der Umgebungstemperatur auf die Batteriespannung, je niedriger die Temperatur, desto niedriger die Batteriespannung bei gleicher Kapazität; Der Einfluss des Zyklus auf die Batterieentladungsplattform neigt im Verlauf des Zyklus dazu, dass sich die Entladeplattform der Lithiumionenbatterie verschlechtert. Die Entladeplattform wird abgesenkt. Daher ändert sich auch die durch dieselbe Spannung dargestellte Kapazität entsprechend; Unterschiedliche Hersteller, unterschiedliche Kapazität Lithium-Ionen-Batterien, die Entladeplattform ist leicht unterschiedlich.
Lithium-Ionen-Batterien aus verschiedenen Arten von Elektrodenmaterialien weisen große Unterschiede bei den Entladungsplattformen auf. Die Entladeplattformen von Kobaltlithiumbatterien und Manganlithiumbatterien sind völlig unterschiedlich. All dies führt zu Spannungsschwankungen und Spannungsunterschieden, wodurch die Anzeige der Batteriekapazität instabil wird. Wenn eine Spannung zum Messen der Akkukapazität eines Mobiltelefons verwendet wird, kann das Mobiltelefon nicht mit einem geringen Strom in einem Standby-Zustand bleiben. Ein vorübergehender Verlust von Hochstrom, wie z. B. das Einschalten der Hintergrundbeleuchtung und das Klingeln des Rings, insbesondere durch, führt dazu, dass die Batteriespannung schnell abfällt. Zu diesem Zeitpunkt wird die vom Telefon angezeigte Kapazität stärker reduziert als die tatsächliche Kapazität. Wenn der große Strom entfernt wird, steigt die Spannung der Batterie an. Dies führt zu dem unvernünftigen Phänomen, dass stattdessen die Kapazitätsanzeige des Mobiltelefons ansteigt.
Die Spannung der Batterie hat während des Entladevorgangs abgenommen. Zum Beispiel wird die Kapazität der Batterie 3,6 V, 19 Ah, 19 Ah nicht auf 0 V, sondern auf 2 oder 3 eingestellt. Wenn die Entladekapazität 19 Ah beträgt, wenn sie auf 0 V eingestellt ist, beträgt die Kapazität 19 etwas mehr, wenn dies der Fall ist Überladen ist, wird die Akkulaufzeit beschädigt.
Wenn das Design ausgezeichnet ist, sind die Abschaltspannung des Messgeräts und die Spannung der Batterie grundsätzlich gleich. Wenn die Spannung einen bestimmten Wert erreicht, z. B. 3 V, wird die Batterie entladen, oder wenn die Batterie fast entladen ist, erreicht das Messgerät die niedrigste Arbeitsspannung. Die minimale Arbeitsspannung ist relativ hoch. Wenn es beispielsweise niedriger als 3,6 V ist, funktioniert es nicht. Dann gibt es eine Situation, in der die Batterie noch Strom hat und das Messgerät nicht funktionieren kann. In diesem Fall sollte die externe Versorgungsspannung erhöht werden.
Die Batteriekapazität ist einer der wichtigen Leistungsindikatoren zur Messung der Batterieleistung. Es gibt die von der Batterie unter bestimmten Bedingungen (Entladerate, Temperatur, Abschlussspannung usw.) entladene Strommenge an (Entladungstest kann mit JS-150D durchgeführt werden), dh die Kapazität der Batterie, normalerweise Amperestunde ist die Einheit (abgekürzt als A · H, 1A · h = 3600C).
Die Batteriekapazität wird unter verschiedenen Bedingungen in tatsächliche Kapazität, theoretische Kapazität und Nennkapazität unterteilt. Die Berechnungsformel der Batteriekapazität C lautet C = ∫ t0It1dt (Integration des Stroms I während t0 bis t1), und die Batterie wird in positive und negative Pole unterteilt.
Die Batteriekapazität wird unter verschiedenen Bedingungen in tatsächliche Kapazität, theoretische Kapazität und Nennkapazität unterteilt.
Die Mindestkapazität, die bei einer bestimmten Entladerate bei 25 ° C zur Abschlussspannung entladen werden muss, ist die Kapazität der angegebenen Batterie zum Zeitpunkt der Konstruktion und Herstellung. Dies wird als Nennkapazität einer bestimmten Entladungsrate RH bezeichnet.
Quadratischer Lithium-Ionen-Akku
Quadratischer Lithium-Ionen-Akku
Die Batteriekapazität wird im Allgemeinen in AH (Amperestunden) und die andere in CELL (Einheitsplatte) in mehreren Watt (W) berechnet. (W / CELL)
1. Ah (Amperestunde) Berechnung, Entladestrom (Konstantstrom) I × Entladezeit (Stunde) T. Wenn beispielsweise die 7AH-Batterie einen kontinuierlichen Entladestrom von 0,35 A hat, kann die Zeit 20 Stunden lang kontinuierlich sein.
2. Die Ladezeit basiert auf 15 Stunden und der Ladestrom beträgt 1/10 der Batteriekapazität. Schnelles Laden verkürzt die Akkulaufzeit.
Die Batteriekapazität bezieht sich auf die Größe des Batteriespeichers. Die Einheit der Batteriekapazität ist "mAh", und der chinesische Name ist mAh (bei der Messung von Batterien mit großer Kapazität, wie z. B. Blei-Speicherbatterien, wird dies der Einfachheit halber im Allgemeinen durch " Ah" angezeigt, der chinesische Name ist Anshi, 1 Ah = 1000 mAh). Wenn die Nennkapazität der Batterie 1300 mAh beträgt, dh der Strom von 130 mA die Batterie entlädt, kann die Batterie 10 Stunden lang arbeiten (1300 mAh / 130 mA = 10 h). Wenn der Entladestrom 1300 mA beträgt, beträgt die Stromversorgungszeit nur etwa 1 Stunde (tatsächliche Arbeitszeit). Es gibt einige Unterschiede aufgrund individueller Unterschiede in der tatsächlichen Kapazität der Batterie. Dies ist eine Analyse unter idealen Bedingungen. Der Strom eines digitalen Geräts im tatsächlichen Betrieb kann bei einem bestimmten Wert nicht immer konstant sein. (Bei einer Digitalkamera ist der Betriebsstrom aufgrund des Öffnens oder Schließens von Komponenten wie LCD-Display und Blitz groß. Ändern), sodass der Akku nur einen bestimmten Wert für die Stromversorgungszeit von a liefern kann Gerät, und dieser Wert kann nur durch praktische Erfahrung geschätzt werden.
Normalerweise sagen wir, dass die Batteriekapazität in Amperestunden ist, was auf einer bestimmten Batterie basiert, die bestimmt wurde.
Zum Beispiel sagen wir die Akkukapazität dieses Mobiltelefons; Die Batteriekapazität dieses Batterie-Autos ist für verschiedene Batterien unterschiedlich. Für die Ermittlung der Batteriespannung ohne Berücksichtigung der tatsächlichen Spannung muss lediglich angegeben werden, dass die Batteriekapazität dargestellt werden kann.
Für Batterien mit unterschiedlichen Spannungen können wir Anshi jedoch nicht einfach zur Darstellung der Kapazität verwenden, z. B. eine 12V20AH-Batterie, eine 15V20AH-Batterie, sogar 20AH, die die gleiche Leistungslast liefern. Das Gerät kann normal arbeiten, aber die Dauer ist Nicht das gleiche, so sollte die Standardkapazität in Arbeit sein.
In einem anderen Beispiel kann ein Gerät 12 V und 24 V unterstützen. Es kann mit einer 12V (20AH) Batterie betrieben werden und kann eine Stunde dauern. Dann werden zwei Serien zu 24 V (20 Ah). Die Zeit wird verdoppelt, daher sollte die Kapazität zu diesem Zeitpunkt als die in der Batterie enthaltene Arbeit betrachtet werden, und sie sollte nicht einfach betrachtet werden.
W (Arbeit) = P (Leistung) * T (Zeit) = I (Strom) * U (Spannung) * T (Zeit)
Diese Diskussion der Batteriekapazität hat praktische Bedeutung und muss realistisch sein. Andernfalls kann man sagen, dass der Akku eines Mobiltelefons größer ist als die Akkukapazität eines Akkuautos. Das ist offensichtlich unwissenschaftlich.
Das Laden einer Batterie mit konstantem Strom und konstanter Spannung und das anschließende Entladen mit konstantem Strom ist die Kapazität der Batterie, der Batterie, der Nickel-Metallhydrid-Batterie usw., aber die Lithiumbatterie ist nicht gut hat eine minimale Entladespannung, dh die Entladespannung kann nicht niedrig sein. Bei 2,75 V ist die Spannung normalerweise mit einer Untergrenze von 3,0 V geschützt. Wenn beispielsweise die Kapazität der Lithiumbatterie 1000 mAh beträgt, beträgt der Lade- und Entladestrom 1000 mA und sie liegt bei 3,0 V in der maximalen Spannung der Batterie bei 4,2 V. Die entladene Kapazität ist die realistischste Kapazität von die Batterie.
Die Kapazität des Akkus ist ein wichtiger Indikator zur Messung der Leistung des Akkus. Sie wird im Allgemeinen in Amperestunden ausgedrückt. Der allgemeine Begriff für Entladezeit (Stunden) und Entladestrom (Ampere), Kapazität = Entladezeit × Entladestrom. Die tatsächliche Kapazität der Batterie hängt von der Menge des aktiven Materials in der Batterie und der Nutzungsrate des Wirkstoffs ab. Je mehr der Wirkstoff ist, desto höher ist die Nutzungsrate des Wirkstoffs und desto größer ist die Kapazität der Batterie. Im Gegenteil, je kleiner die Kapazität, desto mehr Faktoren beeinflussen die Batteriekapazität, die häufig auftreten:
(1) Auswirkung der Entladerate auf die Batteriekapazität
Die Bleibatteriekapazität nimmt mit zunehmender Entladerate ab, dh je größer der Entladestrom ist, desto kleiner wird die Batteriekapazität berechnet. Beispielsweise kann eine 10-Ah-Batterie 2 Stunden lang mit 5A-Entladung entladen werden, dh 5 × 2 = 10. Bei einer 10A-Entladung können dann nur 47,4 Minuten Strom freigesetzt werden, was 0,79 Stunden entspricht. Seine Kapazität beträgt nur 10 × 0,79 = 7,9 Ampere. Wenn sich eine bestimmte Batterie mit unterschiedlichen Raten entlädt, ist die Kapazität unterschiedlich. Wir sprechen darüber, wenn Sie die Kapazität erreichen, müssen Sie die Rate oder Rate der Entladung kennen. Einfach ausgedrückt, wie viel Strom zum Entladen verwendet wird.
(2) Die Auswirkung der Temperatur auf die Batteriekapazität
Die Temperatur hat einen großen Einfluss auf die Kapazität der Blei-Säure-Batterie. Im Allgemeinen nimmt die Temperatur ab, die Kapazität nimmt ab und die Beziehung zwischen der Kapazität und der Temperatur ist wie folgt:
Ct1 = Ct2 / 1 + k (t1-t2) .t1t2 ist die Temperatur des Elektrolyten, k ist der Temperaturkoeffizient der Kapazität, Ct1 ist die Kapazität (Ah), wenn t1, und Ct2 ist die Kapazität (Ah), wenn die Temperatur ist t2. Im Batterieproduktionsstandard ist es im Allgemeinen erforderlich, eine Temperatur auf die Nennstandardtemperatur einzustellen. Zum Beispiel ist t1 die tatsächliche Temperatur t2 ist die Standardtemperatur (im Allgemeinen 25 Grad Celsius). Die negative Platte reagiert empfindlicher auf die niedrige Temperatur als die positive Platte. Wenn die Elektrolyttemperatur gesenkt wird, wenn die Viskosität des Elektrolyten ansteigt, werden die Ionen einem großen Widerstand ausgesetzt, die Diffusionskapazität wird verringert, der Elektrolytwiderstand wird ebenfalls erhöht, der elektrochemische Reaktionswiderstand wird erhöht und ein Teil des Bleisulfats kann normalerweise nicht konvertiert werden. Die Ladungsakzeptanz wird verringert, was zu einer Verringerung der Batteriekapazität führt. .
(3) Die Auswirkung der Abschlussspannung auf die Batteriekapazität
Wenn die Batterie auf einen bestimmten Spannungswert entladen wird, fällt die Spannung stark ab. Tatsächlich ist die erhaltene Energie sehr klein. Wenn der Akku längere Zeit tief entladen ist, ist der Schaden am Akku recht groß. Daher muss die Entladung mit einem bestimmten Spannungswert abgeschlossen werden, der als Entladungsabschlussspannung bezeichnet wird. Das Einstellen der Entladungsabschlussspannung ist für die Verlängerung der Batterielebensdauer von großer Bedeutung. Im Allgemeinen hat die von uns reparierte Elektrofahrzeugbatterie eine Entladungsabschlussspannung von 1,75 Volt pro Netz, was bedeutet, dass eine 12-Volt-Batterie 6 Gitter hat und die Entladungsabschlussspannung 6 × 1,75 = 10,5 Volt beträgt. [2]
(4) Der Einfluss der Geometrie der Platte auf die Batteriekapazität
Wenn die Menge an aktivem Material konstant ist, nimmt der geometrische Bereich der Platte, der den Elektrolyten direkt berührt, zu und die Batteriekapazität nimmt zu. Daher können die geometrische Größe der Platte und der Einfluss auf die Batteriekapazität nicht ignoriert werden.
1 Plattendicke auf die Kapazität
Die Menge an aktivem Material ist konstant, die Batteriekapazität nimmt mit zunehmender Dicke der Platte ab, und je dicker die Platte ist, desto kleiner ist die Kontaktfläche von Schwefelsäure mit dem aktiven Material, desto geringer ist die Nutzungsrate des aktiven Materials. und je kleiner die Batteriekapazität.
2 Plattenhöhe Einfluss auf die Kapazität
In der Batterie gibt es einen großen Unterschied im Nutzungsgrad der aktiven Materialien im oberen und unteren Teil der Platte. Experimente haben bestätigt, dass im Anfangsstadium der Entladung die Stromdichte im oberen Teil der Platte etwa 2- bis 2,5-mal höher ist als im unteren Teil. Die Änderung der Entladung wird allmählich verringert, aber der obere Teil ist größer als die untere Stromdichte.
Einfluss der 3-Platten-Fläche auf die Kapazität
Die Menge an aktivem Material ist sicher, je größer die geometrische Fläche der Platte ist, desto höher ist die Nutzungsrate des aktiven Materials und desto größer ist die Kapazität der Batterie. Bei gleichem Batteriefach und gleicher Qualität des aktiven Materials wird die dünne Platte verwendet, um das Plattenstück zu vergrößern. Die Anzahl, das heißt, vergrößert die effektive Reaktionsfläche der Platten, wodurch die Ausnutzung des aktiven Materials und die Kapazität der Batterie erhöht werden.
Die Seite enthält den Inhalt der maschinellen Übersetzung.
Hinterlass eine Nachricht
Wir melden uns bald bei Ihnen